Bayesian Analysis. Iii. Applications to Nmr Signal Detection, Model Selection and Parameter Estimation 1
نویسنده
چکیده
The two preceding articles developed the application of Bayesian probability theory to the problems of parameter estimation, signal detection, and model selection on quadrature NMR data in some generality. Here those procedures are used to analyze free induction decay data, when the models are sinusoidal. The exact relationship between Bayesian probability theory and the discrete Fourier-transform power spectrum is derived, and it is shown that the discrete Fourier-transform power spectrum is an optimal frequency estimator for a wide class of problems. Signal detection and model selection problems are then examined, and examples are given that demonstrate the ability of Bayesian probability theory to determine the best model of a process even when more complex models t the data better.
منابع مشابه
Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملJoint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
In this paper, the problem of joint Bayesian model selection and parameter estimation for sinusoids in white Gaussian noise is addressed. An original Bayesian model is proposed that allows us to define a posterior distribution on the parameter space. All Bayesian inference is then based on this distribution. Unfortunately a direct evaluation of this distribution and of its features, including p...
متن کامل